A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure.

نویسنده

  • Tom Shearer
چکیده

A new strain energy function for the hyperelastic modelling of ligaments and tendons based on the geometrical arrangement of their fibrils is derived. The distribution of the crimp angles of the fibrils is used to determine the stress-strain response of a single fascicle, and this stress-strain response is used to determine the form of the strain energy function, the parameters of which can all potentially be directly measured via experiments - unlike those of commonly used strain energy functions such as the Holzapfel-Gasser-Ogden (HGO) model, whose parameters are phenomenological. We compare the new model with the HGO model and show that the new model gives a better match to existing stress-strain data for human patellar tendon than the HGO model, with the average relative error in matching this data when using the new model being 0.053 (compared with 0.57 when using the HGO model), and the average absolute error when using the new model being 0.12 MPa (compared with 0.31 MPa when using the HGO model).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new strain energy function for modelling ligaments and tendons whose fascicles have a helical arrangement of fibrils.

A new strain energy function for the hyperelastic modelling of ligaments and tendons whose fascicles have a helical arrangement of fibrils is derived. The stress-strain response of a single fascicle whose fibrils exhibit varying levels of crimp throughout its radius is calculated and used to determine the form of the strain energy function. The new constitutive law is used to model uniaxial ext...

متن کامل

Modification of exponential based hyperelastic strain energy to consider free stress initial configuration and Constitutive modeling

In this research, the exponential stretched based hyperelastic strain energy was modified to provide the unstressed initial configuration. To this end, as the first step, the model was calibrated by the experimental data to find the best material parameters. The fitting results indicated material stability in large deformations and basic loading modes. In the second step, the initial pseudo str...

متن کامل

Rubber/Carbon Nanotube Nanocomposite with Hyperelastic Matrix

An elastomer is a polymer with the property of viscoelasticity, generally having notably low Young's modulus and high yield strain compared with other materials.  Elastomers, in particular rubbers, are used in a wide variety of products ranging from rubber hoses, isolation bearings, and shock absorbers to tires. Rubber has good properties and is thermal and electrical resistant. We used carbon ...

متن کامل

Research Paper: Anatomy and Ultrasonographic Morphometric Measurements of Palmar Metacarpal Tendons and Ligaments in Pure Persian Arabian Horses

Introduction: The evaluation of musculoskeletal system in horse veterinary medicine is very important because of its effect on equine performance. The current study provided an ultrasonography description of the palmar tendons and ligaments of the metacarpus in pure Persian Arabian horses. Methods: The metacarpal regions of 10 healthy mare pure Persian Arabian horses were prepared for ultrason...

متن کامل

Specialization of tendon mechanical properties results from interfascicular differences.

Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2015